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Summary

Crop–weed competition is extensively studied in weed

science. The additive design, in which weed density

varies and the crop density is kept constant, is the

most commonly utilised design in plant competition

studies. The additive design is important to calculate

economic weed thresholds and improve weed control

decision-making. Crop–weed competition studies are

usually conducted by weed scientists, who sometimes

report misleading conclusions because of lack of statis-

tical knowledge needed for data analysis of such stud-

ies. Therefore, the objective of this manuscript is to

provide the concept of additive design and demon-

strate the model selection approach for describing

crop–weed density relationship to non-statisticians. We

evaluated three models routinely used in the literature

to interpret data from additive designs, including poly-

nomial quadratic, sigmoid and rectangular hyperbola

curves. Based on the described statistical criteria, we

demonstrated the rectangular hyperbola to be the most

appropriate model to describe data from an additive

design study looking at Richardia brasiliensis and

Commelina benghalensis competition with maize (Zea

mays). Moreover, we describe step-by-step how to

perform the statistical analysis in R software and inter-

pret the results of crop–weed competition studies. We

suggest the use of the rectangular hyperbola as a stan-

dardised model for crop–weed competition in additive

design.
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Introduction

One of the most common dilemmas that farmers and

practitioners face is how to decide on the timing of a

weed control operation, or when to spray an herbicide.

Before initiating weed control procedures, the follow-

ing are some general guidelines to consider: field scout-

ing and mapping weed patches and utilising the

concepts of the critical period of weed control, weed

thresholds, and decision support with computer

models. Field scouting typically involves assessing the

type and number of weeds, to determine whether a

spray operation is necessary. Mapping and monitoring

weed patches over time will also help to determine the

effectiveness of the control programme.

Studies of crop–weed competition show that yield

loss (YL) is sensitive to differences in the period

between crop and weed emergence (Knezevic et al.,

1997; Hock et al., 2006). It brings to light the impor-

tance of the concepts of a critical period of weed
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control (Knezevic et al., 2002; Knezevic & Datta,

2015) and economic thresholds (Coble & Mortensen,

1992; Wilkerson et al., 2002). A weed threshold is

described as ‘a point at which weed density causes

important crop losses’ (Knezevic et al., 2017). Knowl-

edge of thresholds can help agriculturists make deci-

sions on the need for herbicide applications, in

deciding whether remedial weed control efforts are nec-

essary or economically justified.

An economic weed threshold has been defined as

‘the weed density at which the cost of weed control

equals the increased return on yield in the current

year’ (Knezevic et al., 2017). Because they account for

crop losses only in the current cropping season, eco-

nomic thresholds are single-year measures of weed

effects. Also, economic thresholds are based on factors

such as the price of the crop at harvest, herbicide and

application cost, anticipated crop yield, and the YL–
weed density relationships which are a function of

environmental factors (e.g. soil types and climate).

Since the primary cause of yield reductions by weeds is

through competition for growth-limiting resources

(light, water and nutrients), the economic threshold is

not constant for particular weed–crop combinations

and can differ within and across geographic regions.

In crop–weed competition, the additive design study

is a primary step for calculating thresholds. In additive

design, the weed density varies while crop density is kept

constant (Swanton et al., 2015). Several review papers

recommend the use of rectangular hyperbola for crop–
weed competition studies in the weed science literature

(Cousens, 1985; Knezevic & Horak, 1998; Ritz et al.,

2015; Swanton et al., 2015). However, there is still a dis-

tinct number of empirical models used for additive

design studies (Voll et al., 2002; Strieder et al., 2007;

Silva et al., 2015; Trezzi et al., 2015). Four regressions

curves are frequently used: linear (Fig. 1A), polynomial

quadratic (Fig. 1B), sigmoid (Fig. 1C) and rectangular

hyperbola (Fig. 1D). The commonly used criteria for

selection of linear and non-linear regression models is

the equation with highest R-squared (R2; Archontoulis

& Miguez, 2015). The R2 tests the goodness-of-fit for lin-

ear models and is statistically inadequate for non-linear

model selection (Zuur et al., 2007; Archontoulis &

Miguez, 2015). There are several appropriate statistical

criteria for selecting a non-linear model for datasets:

Akaike’s information criterion (AIC), Bayesian infor-

mation criterion (BIC), F-test and likelihood ratio (Zuc-

chini, 2000; Anderson, 2007; Lewis et al., 2011). These

statistical criteria are used according to the model struc-

ture, which can be non-nested or nested. Non-nested are

models with different structure and parameters, such as

an exponential decay and a rectangular hyperbola

model. The AIC and BIC are indicated for non-nested

model selection. In contrast, nested are models that are

a particular case of each other and have identical terms,

whereas one must have at least one additional term (e.g.

three- and four-parameter log-logistic models). The

Fig. 1 Common regression curves used to

describe the data from crop–weed compe-

tition studies in additive design: (A) lin-

ear; (B) polynomial quadratic; (C)

sigmoid; (D) rectangular hyperbola.
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AIC, BIC, F-test and likelihood ratio are appropriate

selection of non-linear nested models.

From a practical standpoint, the best model should

be selected based on a balance between statistics and bio-

logical relevance, which will help scientists answer their

research questions (Onofri et al., 2010; Werle et al.,

2014a,b; Archontoulis & Miguez, 2015). In additive

design studies, the model that provides a good fit and

essential biological parameters is considered a strong

candidate model to describe the dataset. The advances in

statistical software have facilitated the use of standard-

ised non-linear regression analysis that can be performed

by non-statisticians (Knezevic et al., 2007). Therefore,

the objectives of this manuscript were to:

1 Provide basic knowledge about the concept of

crop–weed competition and additive designs.

2 Test the suitability of three non-nested candidate

models (polynomial quadratic, sigmoid and a rect-

angular hyperbola) for describing crop–weed com-

petition in additive design.

3 Test the null hypothesis that the weed species

Richardia brasiliensis Gomes and Commelina beng-

halensis L. compete similarly with maize (Zea mays

L.). This hypothesis was tested after model selection

(objective 2) using the F-test.

Data from an experiment under glasshouse condi-

tions looking at R. brasiliensis and C. benghalensis

competition with maize were used for the model selec-

tion exercise. The data analysis concept presented here

apply to other weed species and crops studied in glass-

house or field conditions.

Materials and methods

Plant material and growth conditions

Seed heads of R. brasiliensis were harvested along road-

sides near Diamantina, Minas Gerais (MG), Brazil in

March of 2011 and dried at room temperature (25°C),
cleaned and stored at 5°C until the onset of the experi-

ment. Ten days before the experiment began (Septem-

ber 2011), stolons (vegetative propagules) of

C. benghalensis were collected in wetlands, near Dia-

mantina, MG. Seeds of R. brasiliensis and stolons of

C. benghalensis were seeded and transplanted to sepa-

rate trays (1210 cm3) filled with red latosol soil (pH 6.1

and 1% organic matter). A single seed of glyphosate-

resistant (GR) maize was sown in 8 L plastic pots filled

with the aforementioned soil. This procedure was per-

formed to maximise the competition between species.

The soil was fertilised following the local recommenda-

tions and N was applied at 15 and 30 days after maize

emergence (DAE) at a rate of 55 mg L�1 of

ammonium sulphate. Glasshouse conditions were 28/

19°C day/night, and pots were watered daily.

Experimental procedures

The experiment was conducted under glasshouse con-

ditions over a period of 60 days at the Universidade

Federal dos Vales do Jequitinhonha e Mucuri, Dia-

mantina, MG, Brazil. In this study, the additive design

was used (e.g. weed densities varied and maize density

was kept constant; Swanton et al., 2015). The treat-

ment design was a factorial with two weed species,

R. brasiliensis and C. benghalensis, and five weed den-

sities (0, 1, 2, 3 and 4 plants pot�1), in a completely

randomised design with four replications.

Maize dry matter was harvested at 60 DAE from

each experimental unit. Shoot biomass was oven-dried

at 65°C until reaching constant weight and dry weight

recorded. The maize dry matter (g) data (shoot) were

converted into YL (%) compared with the control

treatment (no weeds):

Yield loss ð%Þ ¼ M� B

M
� 100 ð1Þ

where Μ is the mean maize dry mass in the absence of

weed competition (g) of the control treatment, and B

is the dry mass (g) of individual maize plants compet-

ing with weed(s).

Statistical analysis

Three models were fitted to YL data (%) in response

to weed density (plants pot�1):

Rectangular hyperbola model proposed by Cousens

(1985):

YL ¼ I � x
1þ ð IAÞ � x

ð2Þ

where I represents YL (yield loss) per unit weed den-

sity as x (density) approaches 0, and A represents YL

as x approaches ∞ (or maximum expected YL). The

rectangular hyperbola model was fitted using the nls

function of R version 3.3.1 (R Core Team, 2018).

Sigmoid model (four-parameter log-logistic curve):

YL ¼ cþ d� c

1þ exp½bðlog x� log eÞ� ð3Þ

where c is the lower limit (or YL at low weed density),

d is the asymptote (upper limit or YL at high weed

density) and e represents the weed density (weeds

pot�2) that causes 50% YL (inflection point). The

parameter b is the relative slope around the parameter

e, and x is the number of weeds pot�1. Parameters for

the sigmoidal model (four-parameter logistic) were

© 2018 European Weed Research Society
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estimated using the drm function of drc package in R

software (Ritz & Streibig, 2005).

Polynomial quadratic model (second order):

YL ¼ aþ axþ bx2 ð4Þ
where a is the intercept in the y-axis (no YL by weed

competition), a represents the slope of the model. The

parameter b is the quadratic term of the model, and x

is the number of weeds pot�1. The parameters for the

polynomial quadratic equation were estimated using

the lm function of R software.

Model selection to describe crop–weed competition

The AICc (corrected AIC for finite sample size) criterion,

which is indicated for non-nested model selection

(Sugiura, 1978; Hurvich & Tsai, 1991), was calculated as:

AICc ¼ �2 logðlÞ þ 2K � ðn=ðn� K� 1ÞÞ ð5Þ
where l is the likelihood function and K is the number

of estimated parameters in the model, and n is the sam-

ple size of the model. According to the AICc criterion,

the best model has the lowest AICc value. The AICc

values for each model were estimated using the AICc

command of package AICcmodavg in R software.

Model selection to evaluate weed competitiveness

with the crop

Assuming that rectangular hyperbola is the best model,

the impact of R. brasiliensis and C. benghalensis on

maize YL is accessed through the variance ratio or F-

test performed using Eqn (2) (Lindquist et al., 1996).

This statistical procedure evaluates the difference of

residual sum squares (RSS) of nested models. The F-

test is calculated as:

F ¼ ðRSSRED �RSSFULLÞ=ðd.f.RED � d.f.FULLÞ
RSSFULL=d.f.FULL

ð6Þ

where RSSRED and RSSFULL represent the minimised

RSS of the parameters estimated for the full (step 1) and

reduced model (step 2, 3 or 4; steps 1 through 4 are

described next), respectively; d.f.RED and d.f.FULL repre-

sent the degrees of freedom of the full and reduced mod-

els respectively. In practical terms, when P value of the

F-test >0.05, we fail to reject the null hypothesis and a

reduced model should be used (no difference between I

and/or A parameter values between weed species). How-

ever, if P of the F-test <0.05, the null hypothesis is

rejected and the Full model should be used (different I

and/or A parameter values for each weed species). The

F-test principle for non-linear regression analysis was

calculated for each model using nls ANOVA command

in R software (Ritz & Streibig, 2008).

Four significant steps need to be completed to com-

pare the parameters using this method (see

Appendix S1 for statistical codes to perform these

steps in R software):

Step 1: Fit Eqn (2) to the data of each species indi-

vidually (R. brasiliensis and C. benghalensis); single

model having separated I and A parameters for

each species. This represents the Full model, where

four parameter values (I and A for each weed spe-

cies) are estimated.

Step 2: Pool the data for both species (R. brasilien-

sis and C. benghalensis) and fit Eqn (2). This repre-

sents the reduced model (Red.1), where two

parameter values (I and A for both weed species

combined) are estimated for the pooled data. This

step will allow testing the hypothesis that I and A

do not vary between species, which means that both

species compete similarly with maize. If the hypoth-

esis is accepted (P > 0.05), stop here. Otherwise,

there are two additional hypotheses to be tested

(steps 3 and 4).

Step 3: Fit Eqn (2) setting a single parameter I, but

different A parameter for each species (Red.2). This

is a reduced model, and three parameters will be

estimated. This step tests the second hypothesis that

weed species compete similarly at low densities (I),

but different at higher densities (A).

Step 4: Fit Eqn (2) setting a single parameter A,

but different I parameters for each species. This is

a reduced model (Red.3), and three parameters

will be estimated. This step tests the third hypoth-

esis that weed species compete similarly at higher

densities (A), but different at low densities (I).

Additional AICc was also performed for the

nested model selection for confirming the F-test

model selection.

Model goodness-of-fit

Root mean squared error (RMSE) and modelling effi-

ciency (ME) were calculated and used to test the good-

ness-of-fit of non-nested and nested models (Mayer &

Butler, 1993; Roman et al., 2000):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RSS

n� p� 1

s
ð7Þ

ME ¼ 1�
�Pn

i¼1ðOi� PiÞ2Pn
i¼1ðOi� �OiÞ2

�
ð8Þ

where RSS is the residual sums of squares; n is the

number of data points; p is the number of model

parameters; Oi is the observed, Pi is the predicted and

© 2018 European Weed Research Society
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�Oi is the mean observed value. The ME values range

from �∞ and 1, with values closer to 1 indicating bet-

ter predictions (Werle et al., 2014c).

Results

Best model selection to describe crop–weed

competition

The rectangular hyperbola model resulted in the lowest

AICc (332.2), followed by a sigmoid model (337.6) and a

polynomial quadratic model (343.1). The RMSE and

ME resulted in a similar trend for the models tested,

except R. brasiliensis in the polynomial quadratic model

(Table 1). The rectangular hyperbola was also the top

model for describing maize leaf area, height and stem

diameter reduction in response to R. brasiliensis and

C. benghalensis densities (data not shown).

In the rectangular hyperbola model (Fig. 2), four

parameters were estimated, which are I and A for

R. brasiliensis and C. benghalensis. The parameters I

and A for R. brasiliensis were estimated at 50.3% and

82.1% respectively (Table 2). In contrast, for C. beng-

halensis, parameter estimations were 210.2% (I) and

108.6% (A). Also, the P value is significant for param-

eters I and A of both weed species (P < 0.05), indicat-

ing they are different to zero.

According to AICc, the sigmoid model was the sec-

ond best model to describe the data (Table 1). The

maximum maize YL caused by the competition of

R. brasiliensis and C. benghalensis (d) was 67.2% and

93.4% respectively. The 50% maize YL (%) was

achieved at 1.2 and 0.7 plants pot�1 of R. brasiliensis

and C. benghalensis respectively. However, the sigmoid

model had non-significant parameters (values not dif-

ferent to zero, P > 0.05) for both weed species, includ-

ing b, c and e (R. brasiliensis only) (Table 3). The lack

of data points around e can be observed in Fig. 3.

Also, the standard error in b and c parameters is big-

ger than the estimated values (Table 3), indicating the

lack of fit of a sigmoid curve. The RMSE for the sig-

moid model was 2.3, and ME was 0.58 and 0.85 for

R. brasiliensis and C. benghalensis respectively.

The polynomial quadratic model had the highest

AICc (Table 1 and Fig. 4). A similar trend was

observed for RMSE. However, ME of R. brasiliensis

was highest (0.71) across the three models tested

(Table 1). The a was non-significant (P > 0.05) for

both weed species. The a and b parameters were signif-

icant (P < 0.05). The parameter a was 35.5% and

65.5%, and b �5.4 and �11.1 for R. brasiliensis and

C. benghalensis respectively (Table 4).

Model selection to evaluate weed competitiveness

with the crop

Based on AICc, the rectangular hyperbola was the best

model to describe the data (Table 1). The F-test of the

rectangular hyperbola (Full model) indicated that a

reduced model with different parameter I (maize yield

at low weed densities) and similar parameter A (maize

yield at higher densities) was the best model (Red.3)

to describe competition of R. brasiliensis and C. beng-

halensis with maize (Table 5). As demonstrated in the

steps in the Appendix S1, the Red.1 and Red.2 models

were different from the Full model (P < 0.05); thus,

the hypotheses tested in those models were rejected

(Table 5).

Table 1 Non-nested model selection (rectangular hyperbola, sig-

moid and polynomial quadratic) for an additive design study of

maize in competition with Richardia brasiliensis and Commelina

benghalensis under glasshouse conditions

Model Species

Model

selection*

Goodness-

of-fit†

AICc RMSE ME

Rectangular

hyperbola

R. brasiliensis 332.2 2.2 0.64

C. benghalensis 0.92

Sigmoid R. brasiliensis 337.6 2.3 0.58

C. benghalensis 0.85

Polynomial

quadratic

R. brasiliensis 343.1 3.3 0.71

C. benghalensis 0.90

*AICc, corrected Akaike’s information criterion.
†RMSE, Root mean square error; ME, modelling efficiency.

Fig. 2 The relationship between maize yield loss (%) and weed

density (plants pot�1) described with a rectangular hyperbola

model (Full model).

© 2018 European Weed Research Society
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According to the parameter estimates in the rectan-

gular hyperbola Red.3 model (Fig. 5), at low weed

densities (I), maize YL was 37.0 and >100% in

Parameters* Species

Estimate

(�SE)†, %

95% CI

(lower-upper)‡, % t value P value

I R. brasiliensis 50.3 (�22.6) 4.3–96.1 2.2 0.032

C. benghalensis 210.2 (�88.6) 30.7–389.8 2.4 0.023

A R. brasiliensis 82.1 (�23.1) 35.3–128.8 3.6 0.001

C. benghalensis 108.6 (�11.1) 85.3–131.2 9.7 <0.001

*I, represents maize yield loss (%) per unit weed density as density approaches 0; A, rep-

resents maize yield loss (%) as density approaches∞ (or maximum expected yield loss).
†SE, Standard Error.
‡95% CI, Confidence Interval.

Table 2 Rectangular hyperbola (Full

model) parameter estimates for maize

yield loss (%) in competition with Richar-

dia brasiliensis and Commelina benghalen-

sis under glasshouse conditions

Table 3 Sigmoid parameter estimates for maize yield loss (%) in

competition with Richardia brasiliensis and Commelina benghalen-

sis under glasshouse conditions

Parameters* Species

Estimate

(�SE)†, %

t

value

P

value

b R. brasiliensis �1.5 (�1.4) �1.1 0.291

C. benghalensis �3.2 (�5.1) �0.6 0.541

c R. brasiliensis 0.2 (�7.4) 0.0 0.980

C. benghalensis �5.3 (�7.4) 0.0 0.999

d R. brasiliensis 67.2 (�26.9) 2.5 0.017

C. benghalensis 93.4 (�8.4) 11.1 <0.001
e R. brasiliensis 1.2 (�0.7) 1.6 0.047

C. benghalensis 0.7 (�0.3) 2.1 0.124

*b, slope; c, lower limit (weed competition at low densities); d,

upper limit (maximum expected maize yield loss, %); e, inflection

point (weed density which maize yield loss is 50% relative to d).
†SE, Standard Error.

Fig. 3 The relationship between maize yield loss (%) and weed

density (plants pot�1) described with a sigmoid model.

Fig. 4 The relationship between maize yield loss (%) and weed

density (plants pot�1) described with a polynomial quadratic

model.

Table 4 Polynomial quadratic parameters estimates for maize

yield loss (%) in competition with Richardia brasiliensis and

Commelina benghalensis under glasshouse conditions

Parameters* Species

Estimate

(�SE)†, %

t

value

P

value

a R. brasiliensis �0.7 (�7.7) �0.1 0.926

C. benghalensis 4.9 (�6.1) 0.8 0.431

a R. brasiliensis 35.5 (�9.1) 3.8 0.001

C. benghalensis 65.5 (�7.3) 9.0 <0.001
b R. brasiliensis �5.4 (�2.2) �2.5 0.024

C. benghalensis �11.1 (�1.7) �6.4 <0.001

*a, intercept at Y value when density equals zero; a, is the slope

of the equation; b, is the quadratic term of the equation.
†SE, Standard Error.
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competition to R. brasiliensis and C. benghalensis

respectively. However, at higher densities, R. brasilien-

sis and C. benghalensis compete similarly, and maize

YL was 106.1% (Table 6). The AICc results corrobo-

rate the F-test, as the model selected by the F-test (dif-

ferent I, but similar A) resulted in the lowest AICc of

330.4. The RMSE was similar in Red.3 and Full

model, but the highest ME for R. brasiliensis (0.95)

and C. benghalensis (0.98) demonstrated the goodness-

of-fit of the best model selected (Red.3).

Discussion

Model selection to describe crop–weed competition

Amongst the non-nested models tested, the rectangular

hyperbola was the best model to describe maize YL

(%) in response to both R. brasiliensis and C. beng-

halensis competition (Table 1). The model with the

smallest value of AICc was considered the best model

or the best descriptor of the full reality given the set of

candidate models and the data (Anderson, 2007).

The I parameter of C. benghalensis was not biologi-

cally meaningful (>100%; Table 2). The curve has a

steep inclination (Fig. 2), which is likely due to the rel-

atively small pot size used in this study, indicating that

C. benghalensis is very competitive with maize. There-

fore, bigger pots and lower C. benghalensis densities

would have been necessary for biologically meaningful

estimation of I parameter. Also, the parameter A

(C. benghalensis) is slightly above 100%, which means

that at higher densities C. benghalensis is likely to sup-

press maize completely. Nonetheless, the maximum

biological maize YL (100%) is within the confidence

intervals for parameter I and A of C. benghalensis

(Table 2). The parameters I and A were also not bio-

logically meaningful (>100%) in a field study of

Amaranthus retroflexus in competition with Sorghum

bicolor (Knezevic & Horak, 1998). Herein, we highlight

potential issues with experimental design and data

analysis commonly occurring to either greenhouse or

field studies.

Constraining parameter values is a common prac-

tice for non-linear modelling (Fox & Weisber, 2011).

For example, the function nls in R software allows

boundaries, such as setting the A parameter of the

rectangular hyperbola = 100%, which was done by

Table 5 Hypothesis testing, nested model

selection criteria and goodness-of-fit of

the rectangular hyperbola model parame-

ters I and A of maize yield loss (%) in

competition with Richardia brasiliensis

and Commelina benghalensis under glass-

house conditions

Hypothesis Species

Model selection*

Goodness-

of-fit†

F-test AICc

RMSE MEF value P value

Different I and

A (Full)

R. brasiliensis - - 332.2 2.2 0.64

C. benghalensis 0.92

Similar I and

A (Red.1)

R. brasiliensis 32.3 0.00 368.2 3.6 0.84

C. benghalensis

Similar I but

different A (Red.2)

R. brasiliensis 4.1 0.04 333.9 2.3 0.69

C. benghalensis 0.97

Similar A but

different I (Red.3)

R. brasiliensis 0.7 0.39 330.4 2.2 0.95

C. benghalensis 0.98

*F-test model selection; if P value<0.05: significantly different models; if P

value > 0.05: non-significantly different models; AICc, Akaike’s information criterion;
†RMSE, Root mean square error; ME, modeling efficiency.

Fig. 5 The relationship between maize yield loss (%) and weed

density (plants pot�1) described with a rectangular hyperbola

model (Red.3).
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Barnes et al. (2018) in their study evaluating competi-

tion of Ambrosia artemisiifolia with soybeans. Con-

straining an upper limit (e.g. maximum A = 100%)

might be a valuable tool to improve the biological

meaning of parameter A (no >100% YL), but not for

parameter I. Setting limits to parameter I would

impact in the inclination of the curve (slope), poten-

tially misleading research findings. In our analysis, for

the exercise proposes, we have not set an upper limit

to parameter A. But the Appendix S1 shows an exam-

ple of how to set an upper limit to parameter A.

To understand the nature of crop–weed competition

modelling, one needs to comprehend the concept of

constant final yield (CFY). The CFY is described from

low to high densities, whereas the relationship between

total biomass per unit area and density is initially lin-

ear, but eventually reaches a plateau (e.g. YL remains

constant despite the increase in density; Weiner &

Freckleton, 2010). In our study, the CFY was reached

at low density of C. benghalensis. As a result, the esti-

mation of parameter I and A from C. benghalensis was

above 100% (Table 2). In contrast, for R. brasiliensis,

I and A were reached below 100%. Thus, the weed

density for attaining CFY can vary amongst species.

Other studies showed that CFY was reached with the

estimation of I and A under 100%, indicating that

some weed species may not lead to total crop YL

(Knezevic et al., 1997; Knezevic & Horak, 1998). Con-

sequently, for proper additive design studies, different

weed densities based on the competitive potential of

each species might be necessary. Additionally, a com-

petition study that reports a linear relationship trend

between crop YL and weed density has not reached

CFY (Fig. 1A). It is likely that either the appropriated

weed density for the study was not selected or plants

were harvested before significant competition occurred

(Weiner & Freckleton, 2010). Therefore, the crop–weed
competition experiments need to be properly designed

so CFY is achieved and model parameter estimates are

statistically accurate and biologically meaningful.

According to AICc, the sigmoid was the second

model to best describe the data (Table 1). The sigmoid

model does not seem to be appropriate to describe the

data from additive design studies (Fig. 3). The symmet-

ric shape of sigmoid models is related to the rate of

change. One of the assumptions when using the sigmoid

(logistic) model is that the inflection point (e) is always

at 50% of the asymptotic size (Knezevic et al., 2007;

Ritz et al., 2015). Therefore, sigmoid curves have no

biological meaning for competition studies in additive

design (rectangular hyperbola pattern). Although the

sigmoid model is not recommended for additive design,

it is one of the most commonly used and appropriate

models in other weed research topics. Sigmoid curves

are extensively utilised for predicting weed emergence

(Werle et al., 2014a,b), herbicide dose–response (Ritz

et al., 2015) and critical time for weed removal (Kneze-

vic & Datta, 2015). For example, in herbicide dose–re-
sponse studies, the parameter e is meaningful and

important for comparison of herbicides doses that con-

trol 50% of a weed population (Oliveira et al., 2017).

The polynomial quadratic model was statistically the

least appropriate for describing the data. The a and a

parameters estimated from a polynomial quadratic

model possibly have biological meaning. However, the

b parameter does not. Nonetheless, this model does not

provide biological parameters that would improve the

discussion, test hypothesis and help researchers under-

stand the results from crop–weed competition studies.

Also, the polynomial quadratic curve is symmetric

around the x-axis (Fig. 1B), which makes such response

biologically unlikely in an additive design study. For

example, the predicted maize YL (%) is lower at four

plants pot�1 than at three plants pot�1 (Fig. 4). The

highest ME for R. brasiliensis could potentially mislead

model selection; thus, ME should be used as a good-

ness-of-fit indicator and not for model selection. There-

fore, a polynomial quadratic curve is not recommended

for describing the results of additive design studies.

In additive design studies, because of misleading

model selection using goodness-of-fit (usually R2), it is

common to find multiple equations describing response

variables (Ferreira et al., 2015; Silva et al., 2015). For

example, over six models were used to describe the

Parameters* Species

Estimate

(�SE)†, %

95% CI

(lower-upper)‡, % t value P value

I R. brasiliensis 37.0 (�6.2) 24.4–49.6 5.9 <0.001
C. benghalensis 228.3 (�100.2) 25.4–431.3 2.3 0.028

A R. brasiliensis 106.1 (�10.3) 85.3–127.1 10.3 <0.001
C. benghalensis

*I, represents maize yield loss (%) per unit weed density as density approaches 0; A, rep-

resents maize yield loss (%) as density approaches∞ (or maximum expected yield loss).
†SE, Standard Error.
‡95% CI, Confidence Interval.

Table 6 Rectangular hyperbola (Red.3

model) parameters estimates for maize

yield loss (%) in competition with

Richardia brasiliensis and Commelina

benghalensis

© 2018 European Weed Research Society

8 M C Oliveira et al.



competition of two weed species [Urochloa decumbens

(Stapf) R.D. Webster and Ipomoea grandifolia (Dam-

mer) O’Donell] with three neotropical trees [Senegalia

polyphylla (DC.) Britton & Rose, Ceiba speciosa

(A.St.-Hil.) Ravenna, and Luehea divaricata Mart]

(Monquero et al., 2015). It becomes difficult to evalu-

ate and compare weed competitiveness when different

equations with non-related parameters are used.

Model selection to evaluate weed competitiveness

with the crop

It was statistically and biologically demonstrated that

the rectangular hyperbola model was the best model to

describe crop–weed competition in an additive design.

The F-test nested model selection showed that at high

densities (A), competition of R. brasiliensis and

C. benghalensis in maize YL is similar, but different at

low densities (I; Table 5). Therefore, the model Red. 3

is selected and the hypothesis that competition of

R. brasiliensis is similar to C. benghalensis in maize

was partially rejected. The practical implication of this

model selection exercise is that, at low densities,

C. benghalensis is more competitive than R. brasiliensis

in maize (under glasshouse conditions).

A complete review of parameter I and A of the rect-

angular hyperbola model is provided by Cousens (1985).

Many authors have used this model to answer their

research questions and improve weed control decision-

making (Lindquist et al., 1999; Cathcart & Swanton,

2003; Fischer et al., 2004; Werle et al., 2014c). For exam-

ple, using parameters I and A, it was demonstrated that

organic cropping systems have the potential to tolerate

greater abundance of weeds compared with conventional

systems (Ryan et al., 2009). Additionally, using the rect-

angular hyperbola model, the high competitive potential

of Amaranthus palmeri in maize (Massinga et al., 2001),

Kochia scoparia in sunflower (Lewis & Gulden, 2014)

and interference of A. artemisiifolia in soybeans (Barnes

et al., 2018) was demonstrated. Parameters I and A are

also useful for estimating weed competition across differ-

ent locations and appropriate for calculating economic

weed thresholds (Lindquist et al., 1996; Lindquist &

Mortensen, 1998). Thus, the rectangular hyperbola pro-

posed by Cousens (1985) and the F-test nested model

selection are important and useful tools of crop–weed
competition in additive design research.

Here, we demonstrate that the rectangular hyper-

bola was statistically and biologically the best model

to describe crop–weed competition using data from

this additive design study. Potential issues, including

not biologically meaningful parameters (>100%), were

also addressed. Nonetheless, the rectangular hyperbola

model has an asymptote curve shape that fits well with

the expected results from most additive design studies.

The I and A parameters are easily interpreted and bio-

logically meaningful. We suggest the rectangular

hyperbola as a standard model for crop–weed competi-

tion studies in additive design. Sigmoid models are

adequate for some other studies (e.g. herbicide dose–
response), and the use of polynomial quadratic curves

is not encouraged in weed research. Also, a step-by-

step statistical analysis with R codes was performed

for a competition study in additive design; we believe

that this review will assist data analysis performed by

non-statisticians studying crop–weed competition.
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