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A B S T R A C T

Canopy reflectance has been used in crops, such as corn and wheat, to assess crop status and direct in-season
management practices, but less research has focused on using canopy reflectance in soybean research and
production. In this study, soybean canopy reflectance measurements were measured at several growth stages
throughout the 2015 and 2016 growing seasons using the RapidSCAN CS-45 Handheld Crop Scanner to de-
termine if the normalized difference red edge (NDRE) index could be used to predict relative soybean pro-
ductivity within a field prior to harvest. The NDRE values were used to calculate the cumulative reflectance of
each experimental unit over the season. The cumulative reflectance readings through the R6 growth stage,
termed the area under the reflectance progress curve (AURPC), and seed yield of every experimental unit were
classified as top 25%, middle 50%, or bottom 25% within each location. Across all locations, bottom AURPC
values correctly predicted bottom yield 52.5% of the time, and ranged from 46.7 to 86.2% by location. The
probability of incorrectly predicting the bottom yield with a top AURPC value (9.7%) was also lower than
incorrectly predicting the top yield with a bottom AURPC value (12.3%). Misclassifications by incorrectly
identifying a bottom yield with a top AURPC ranged from 0.0% to 16.7% by location. Additionally, individual
NDRE values at R2 were determined to be influenced by seed treatments at seven of the eight locations
(p = 0.10) and, upon further investigation, found to be correlated to early-season soybean populations
(r2 = 0.314).

1. Introduction

Increasing soybean [Glycine max (L.) Merrill] yields is one of the
primary goals of research involved in soybean production. However,
determining the variables that consistently increase soybean yields, or
stressors that reduce soybean yields, continues to challenge researchers,
agronomists, and producers. The use of crop sensors has emerged as a
new technology being used successfully in other cropping systems to
monitor and manage agricultural inputs in a site-specific manner
(Hatfield et al., 2008; Pinter et al., 2003).

Genetic improvements account for nearly two-thirds of on-farm
yield gains (Rincker et al., 2014; Specht et al., 2014). The remaining
gain is a result of changes in agronomic practices (Rowntree et al.,
2013), including earlier planting dates (Heatherly and Elmore, 2004;
Specht et al., 1999), narrower row spacing (Heatherly and Elmore,
2004; Specht et al., 1999; Voldeng et al., 1997), improved weed control

(Luedders, 1977; Voldeng et al., 1997), and reduced harvest loss
(Specht et al., 1999). Managing soybean diseases and insects is also an
important agronomic practice to prevent soybean yield losses (Kandel
et al., 2016). To increase soybean yields, growers have increased their
use of seed treatments, foliar fungicide and insecticide applications at
pod set, and the use of fertilizers (USDA-NASS, 2016). However, yield
responses to these inputs are often inconsistent and vary by environ-
ment and cultivar (Gaspar et al., 2014; Swoboda and Pedersen, 2009).

Crop canopy sensors have emerged as a technology to evaluate plant
characteristics using principles of leaf and canopy reflectance that can
eliminate the bias inherent to typical evaluation practices. Reflectance
properties in the near infrared (NIR) region (700–1300 nm) of the
electromagnetic (EM) spectrum are influenced by leaf density and ca-
nopy structure (Kumar and Silva, 1973), while chlorophylls strongly
absorb in the blue and red regions of the EM spectrum (Lichtenthaler
and Buschmann, 2001). Additionally, absorption in the red edge (RE)
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region (680–750 nm) of the spectrum, defined as the inflection point
between the red and near infrared regions of the spectrum, is sensitive
to changes in chlorophyll content (Gitelson et al., 1996), which is clo-
sely related to gross primary productivity of terrestrial plants (Gitelson
et al., 2006).

Numerous algorithms, or vegetation indices (VIs), have been de-
veloped using reflectance measurements in the visible and NIR re-
flectance bands to estimate biophysical characteristics of vegetation
(Hatfield et al., 2004). The normalized difference red edge (NDRE)
index, defined in detail in the Materials and Methods section, is a VI
that has been used for crop canopy evaluations (Gitelson and Merzlyak,
1994). The RE band penetrates deep into the canopy and is sensitive to
crop canopy chlorophyll at higher canopy biomass, overcoming the
saturation inherent to the normalized difference vegetation index
(NDVI), the most commonly used VI (Li et al., 2014). Eitel et al. (2010)
found that using RE reflectance improved the ability to estimate var-
iations in chlorophyll content (r2 > 0.73, RMSE < 1.69) over devices
that did not use RE (r2 = 0.57, RMSE = 2.11).

Crop canopy sensors have been used for numerous agronomic ap-
plications, particularly as a tool in precision agriculture (Pinter et al.,
2003). In wheat production (Raun et al., 2005) and corn production
(Holland and Schepers, 2010; Solari et al., 2008) algorithms have been
developed using vegetation indices to direct in-season nitrogen man-
agement based on changes in remotely-sensed chlorophyll content and
biomass. Less work has focused on soybean production, most likely
because nitrogen management is less important due to the plant’s in-
nate ability to fix its own nitrogen (Keyser and Li, 1992). However,
research that has utilized crop sensors in soybean has primarily focused
on individual components of soybean production, such as detecting
weed infestations (Medlin et al., 2000), identifying insect infestations
(Board et al., 2007), and detecting stress induced by soybean cyst ne-
matode (SCN) at the field level (Nutter et al., 2002), while some have
evaluated the ability to predict soybean yield (Ma et al., 2001;
Mourtzinis et al., 2014; Zhang et al., 1999).

Management zones have been used in precision agriculture to effi-
ciently manage agricultural crops. Often, management zones are cre-
ated from historical yield records, field topography and soil properties,
or soil electrical conductivity (Fleming et al., 2000; Schepers et al.,
2004). Remote sensing has provided another tool to delineate

management zones by providing characteristics of a growing crop
during the season (Inman et al., 2008).

The RapidSCAN CS-45 Handheld Crop Sensor (Holland Scientific
Inc., Lincoln, NE) is an example of a crop canopy sensor that is being
used commercially in the field of agriculture. The RapidSCAN sensor is
an active optical sensor that measures crop and soil reflectance at three
wavelengths, red (670 nm), RE (730 nm), and NIR (780 nm). Active
sensors utilize their own radiation source, thereby eliminating the need
for sufficient ambient illumination to collect reflectance readings
(Holland et al., 2012). The NDRE index is calculated from the RE and
NIR bands to evaluate differences in crop canopy biomass and chlor-
ophyll content (Gitelson et al., 1996). Because of the inherent limita-
tions of the NDVI index, and the capability of this sensor to calculate
NDRE, the latter index was examined to determine its utility in a soy-
bean crop.

No studies to date have investigated the ability to use multiple
NDRE index values to create management zones in soybeans.
Vegetation indices have predominantly been recorded at a single point
in the season to evaluate crop canopy characteristics. Therefore, the
objectives of this study were to (i) determine if multiple crop canopy
sensor readings using NDRE index values over the course of the soybean
growing season could be used as an indicator of soybean yield and field
productivity, and (ii) determine at what growth stages single readings
by a commercially available crop canopy sensor could be used to
evaluate physiological responses to soybean inputs in a small-scale re-
search setting using NDRE.

2. Materials and methods

2.1. Experimental site and design

This study was conducted at four field locations each year between
2014 and 2015 across eastern Nebraska for a total of eight different
locations (Fig. 1). Sites were selected to represent the major soybean-
producing region of Nebraska with no prior knowledge of pest pressure.

The experimental design was an alpha lattice to account for varia-
tion inherent in large field experimentation (Barreto et al., 1996). All
plots were planted in four complete blocks at 76-cm row spacing. In
both years, thirty treatments were arranged in a 5 × 6 alpha-lattice

Fig. 1. Field trial locations across eastern Nebraska during 2014 and 2015.
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with five incomplete blocks of six plots each in each whole plot block.
Treatments consisted of five seed treatments and six foliar treatments
per year (Tables 1 and 2). Slurries of all fungicide, insecticide and
biological components of seed treatments were applied to the seed with

a motorized cement mixer within one week of planting. The nitrogen
component of the complete seed treatment in 2014 was applied to the
soil surface between the soybean rows with a CO2-pressurized tractor
mounted sprayer using TeeJet fertilizer orifice plates (CP4916-20)

Table 1
Soybean seed and early season treatments applied during 2014 and 2015 field studies.

Treatment Treatment
Abbreviation

Subset Treatment
Abbreviationa

Year Product Active Ingredient Growth
Stage

Product Rate (seed−1)

2014 2015

None N-ST N-ST + + – – Seed –
Fungicide F-ST F-ST + + Apron XL mefanoxam Seed 0.0110 mg a.i.

Maxim 4FS fludioxonil Seed 0.0037 mg a.i.
Vibrance sedaxane Seed 0.0011 mg a.i.

Nitrogen NIT-ST + – UAN 28−0−0 V2 16.8 kg N ha−1

Fungicide + Insecticide FI-ST – + Apron XL mefanoxam Seed 0.0110 mg a.i.
Maxim 4FS fludioxonil Seed 0.0037 mg a.i.
Vibrance sedaxane Seed 0.0011 mg a.i.
Cruiser 5FS thiamethoxam Seed 0.0730 mg a.i.

Fungicide + Insecticide
+ Nitrogen

C-ST C-ST + – Apron XL mefanoxam Seed 0.0110 mg a.i.
Maxim 4FS fludioxonil Seed 0.0037 mg a.i.
Vibrance sedaxane Seed 0.0011 mg a.i.
Cruiser 5FS thiamethoxam Seed 0.0730 mg a.i.
UAN 28−0−0 V2 16.8 kg N ha−1

Fungicide + Nitrogen FN-ST + – Apron XL mefanoxam Seed 0.0110 mg a.i.
Maxim 4FS fludioxonil Seed 0.0037 mg a.i.
Vibrance sedaxane Seed 0.0011 mg a.i.
UAN 28−0−0 V2 16.8 kg N ha−1

Fungicide + Insecticide
+ Biological

C-ST C-ST – + Apron XL mefanoxam Seed 0.0110 mg a.i.
Maxim 4FS fludioxonil Seed 0.0037 mg a.i.
Vibrance sedaxane Seed 0.0011 mg a.i.
Cruiser 5FS thiamethoxam Seed 0.0730 mg a.i.
QuickRoots Bacillus amyloliquefaciens

+ Trichoderma virens
Seed 2.98 × 10−5 ml

Biological BIOL-ST – + QuickRoots Bacillus amyloliquefaciens
+ Trichoderma virens

Seed 2.98 × 10−5 ml

aA subset of seed treatments was used to evaluate the response of crop canopy reflectance to soybean seed treatments. C-ST consisted of fungicide + insecticide + nitrogen in 2014, and
fungicide + insecticide + biological in 2015.

Table 2
Soybean foliar treatments applied at pod set (R3 growth stage) in field studies during 2014 and 2015.

Treatment Treatment
Abbreviation

Subset Treatment
Abbreviationa

Trade Name Active Ingredient Product Rate

None N-PD N-PD
Fungicide F-PD F-PD Stratego YLD prothioconazole 36.8 g a.i. ha−1

trifloxystrobin 109.7 g a.i. ha−1

Fertility FERT-PD UAN 28−0−0 28 kg N
N-Rage 23-4-2-0.05Mn 2.8 kg N, 0.48 kg P2O5, and 0.24 kg K2O kg ha−1,

and 6.1 g Mn ha−1

SoyGrow 0.5Mg-0.36Fe-2.6Mn-
1.5Zn

7.0 g Mg, 5.6 g Fe, 37.9 g Mn, and 22.4 g Zn ha−1

Fungicide + Fertility FF-PD Stratego YLD prothioconazole 36.8 g a.i. ha−1

trifloxystrobin 109.7 g a.i. ha−1

UAN 28−0−0 28 kg N ha−1

N-Rage 23-4-2-0.05Mn 2.8 kg N, 0.48 kg P2O5, and 0.24 kg K2O kg ha−1,
and 6.1 g Mn ha−1

SoyGrow 0.5Mg-0.36Fe-2.6Mn-
1.5Zn

7.0 g Mg, 5.6 g Fe, 37.9 g Mn, and 22.4 g Zn ha−1

Fungicide + Insecticide FI-PD FI-PD Stratego YLD prothioconazole 36.8 g a.i. ha−1

trifloxystrobin 109.7 g a.i. ha−1

Leverage 360 imidacloprid 36.8 g a.i. ha−1

β-cyfluthrin 24.5 g a.i. ha−1

Fungicide + Insecticide
+ Fertility

FIN-PD FIN-PD Stratego YLD prothioconazole 36.8 g a.i. ha−1

trifloxystrobin 109.7 g a.i. ha−1

Leverage 360 imidacloprid 36.8 g a.i. ha−1

β-cyfluthrin 24.5 g a.i. ha−1

UAN 28−0−0 28 kg N ha−1

N-Rage 23-4-2-0.05Mn 2.8 kg N, 0.48 kg P2O5, and 0.24 kg K2O kg ha−1,
and 6.1 g Mn ha−1

SoyGrow 0.5Mg-0.36Fe-2.6Mn-
1.5Zn

7.0 g Mg, 5.6 g Fe, 37.9 g Mn, and 22.4 g Zn ha−1

a A subset of seed treatments was used to evaluate the response of crop canopy reflectance to soybean seed treatment.
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(Spraying Systems Co., Wheaton, IL) on 38.1-cm spacing. The sprayer
was pressurized to 138 kPa to achieve a spray volume of 46.8 L ha−1.
All foliar treatments were applied with a CO2-pressurized tractor
mounted sprayer using Turbo TeeJet TTI110015 nozzles (Spraying
Systems Co., Wheaton, IL) spaced 50.8-cm apart. The sprayer was
pressurized to 276 kPa to achieve a spray volume of 134.7 L ha−1.
Foliar treatments were applied when soybeans reached the R3 growth
stage (pod set) (Fehr and Caviness, 1977).

Experimental plots were planted with a 4-row cone planter (76-cm
row spacing) 10.7-m long at a rate of 346,000 seeds ha−1. A late ma-
turity group II soybean variety was planted across all locations in each
year; Asgrow AG2733 (Monsanto Company, St. Louis, MO) in 2014 and
Mycogen 5N286R2 (Dow AgroScience, Indianapolis, IN) in 2015. Field
characteristics and cultural practices are reported in Table 3. Plant
populations were assessed four weeks after planting and at harvest.
Populations were determined by counting the total number of plants in
two 3-m sections of row in each plot. Prior to harvest, the two middle
rows of each plot were cut to a uniform length of 9.1 m. Plots were
harvested with an Almaco plot harvester (Almaco, Nevada, IA)
equipped with an onboard moisture sensor at maturity and all yields
were adjusted to 13% grain moisture. The center 7.6 m of the two
middle rows were harvested for yield to eliminate edge effects.

2.2. Crop canopy reflectance measurements

At regular intervals throughout the season, crop canopy reflectance
measurements were recorded according to previously published
methods (Mourtzinis et al., 2014) using a RapidSCAN CS-45 Handheld
Crop Scanner (Holland Scientific, Lincoln, NE). The sensor was held
approximately 1.5-m above the soybean canopy by the evaluator be-
tween the middle rows to collect reflectance data from the harvest
rows. The evaluator walked between the harvest rows and logged data
from the center 7.6-m of every plot. Readings were taken twice during
the vegetative growth stages, at approximately V3 and V8 (Fehr and
Caviness, 1977), and then at weekly intervals when the soybeans
reached the R2 reproductive growth stage. Readings were stopped
when soybeans reached full maturity. An average reflectance mea-
surement in the red, RE, and NIR wavebands was recorded during each
reading. Reflectance measurements in the NIR and RE wavebands were
used to calculate the NDRE index as follows:

=
−
+

NDRE
ρ ρ
ρ ρ

RE

NIR RE

NIR

where ρNIR = reflectance at 780 nm and ρRE = reflectance at 730 nm.

3. Statistical analyses

3.1. Cumulative reflectance

The NDRE values from all experimental units were plotted by days
after planting (DAP) and day of year (DOY) to visualize changes in crop
canopy reflectance over the course of the season (Fig. 2). The DOY was
selected as the time parameter to evaluate the data based on the similar
curves across all locations (R. Development Core Team, 2008).

The area under the disease progress curve (AUDPC), a calculation
utilized in plant epidemiology, was used to characterize the cumulative
reflectance of each experimental unit after each reading during the
course of the growing season (Shaner and Finney, 1977). The calcula-
tion was adapted to utilize NDRE values and renamed the area under
the reflectance progress curve (AURPC) as follows:
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where Yi = NDRE value at the ith observation, ti = day of the year at
the ith observation, and n= total number of observations.

3.2. Correlations between cumulative reflectance and yield

Seed yield was statistically analyzed using analysis of covariance
computed using the general linear model procedure (PROC GLM) in
SAS version 9.4 (S.A.S Institute, 2016) where all treatment factors and
locations were considered fixed, whole plot block nested in each loca-
tion and incomplete block nested in each whole plot block were con-
sidered random effects, and cumulative reflectance was considered a
covariate. Separate models were run to test AURPC calculated through
the R3 and R6 growth stages as separate covariates. Seed yield was
analyzed again with the general linear model without the covariate to
determine the predicted values of seed yield and residuals of the model
explained by the fixed and random effects. A correlation procedure
(PROC CORR) was performed by location to determine the relationship
between seed yield and the residuals with AURPC at R3 and R6. Seed
yield and the residuals were then analyzed using the regression

Table 3
Field characteristics and cultural practices of field trials at each location in Nebraska during 2014–2015.

Year Location Planting Date Tillage Soil Series (Soil Family) Soil Characteristicsa

CEC OM pH MP3b K

cmolc kg−1 g kg−1 —mgkg−1—

2014 Auburn 7 May No-till Yutan silty clay loam 17.0 3.3 6.0 8 232
(fine-silty, mixed, superactive, mesic Mollic Hapludalfs)

Belgrade 28 April No-till Hall silt loam 15.0 3.0 5.9 54 377
(fine-silty, mixed, superactive, mesic Pachic Argiustolls)

Shickley 6 May Conventional Crete silt loam 8.0 1.5 6.7 11 220
(fine, smectitic, mesic Pachic Udertic Argiustolls)

Snyder 6 May No-till Moody/Nora silty clay loam 23.0 3.9 6.4 7 327
(fine-silty, mixed, superactive, mesic Udic Haplustolls)

2015 Alda 12 May Conventional Hall and Nord silt loam 15.2 3.1 6.0 26 480
(fine-silty, mixed, superactive, mesic Pachic Argiustolls)

Greenwood 29 April No-till Tomek silty clay loam 15.1 3.6 6.9 40 424
(fine, smectitic, mexic Pachic Argiudolls)

Holdrege 30 April Conventional Kenesaw silt loam 20.5 2.4 7.5 94 581
(coarse-silty, mixed, superactive, mesic Typic Haplustolls)

Wakefield 19 May Turbo till Belfore/Nora silty clay loam 20.6 4.2 6.2 72 423
(fine, smectitic, mesic Udic Haplustolls)

a Soils sampled 0–20 cm at harvest.
b MP3, Mehlich 3 phosphorus extraction. Multiply MP3 values by 0.85 to get Bray 1P values.
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procedure (PROC REG) to determine the fit statistics associated with
AURPC at R3 and R6.

3.3. Field productivity classification

The AURPC value calculated through the R3 and R6 growth stage
for every plot was classified as either: TOP (top 25% of AURPC values
for the given location), MIDDLE (middle 50% of AURPC values for the
given location), or BOTTOM (bottom 25% of AURPC values for the
given location). The same procedure was performed for the seed yield
of every plot. The justification for this procedure was to create four
management zones based on the productivity of each field location
(Miao et al., 2006). The two middle management zones for AURPC and
yield were combined to highlight only the lowest and highest pro-
ductivity zones in the field. The logistic procedure (PROC LOGISTIC) in
SAS version 9.4 was used to perform a multinomial regression analysis
on the categorized AURPC and yield values as a combined experiment
to determine the probability of predicting the correct yield class from
the AURPC class. The same procedure was performed on AURPC values
calculated through the R6 growth stage by location.

3.4. Canopy reflectance response to treatments

A subset of treatments was selected to evaluate treatment effects on
crop canopy reflectance; three seed treatments [nontreated control (N-
ST), fungicide (F-ST), and complete (C-ST)] and four foliar pod set
treatments [nontreated control (N-PD), fungicide (F-PD), fungicide
+ insecticide (FI-PD), and fungicide + insecticide + fertility (FIN-PD)]
(Tables 1 and 2). The C-ST treatment included the fungicide

+ insecticide + nitrogen treatment in 2014 and the fungicide + in-
secticide + biological treatment in 2015. The NDRE values measures at
different growth stages were statistically analyzed using the generalized
linear mixed model procedure (PROC GLIMMIX) in SAS Version 9.4 by
location and as a combined experiment considering the alpha lattice
field design (Barreto et al., 1996). All treatment factors and locations
were considered fixed, while whole plot block and incomplete block
nested in each whole plot block were considered random effects. Sig-
nificant differences were determined based on a 0.05 level of sig-
nificance. The NDRE values for the twelve reflectance measurements
for each experimental unit were analyzed as repeated measures with
seed treatment, foliar treatment, time, and location evaluated as fixed
effects. The NDRE responses to seed treatments were analyzed by lo-
cation for each reading.

4. Results

Air temperature during April and May (when field studies were
planted) was generally cooler than normal (1981–2010). All locations
in April and five locations in May deviated below normal recorded
temperatures, available through the High Plains Regional Climate
Center-CLIMOD, by −0.1 to −3.5 °C (Table 4). Three locations in May
2014 deviated positively from the normal recorded temperatures by
0.2–0.7 °C. Total precipitation measured from one week prior to three
weeks after planting was greatest in 2015, and ranged from 50.5 to
241.8 mm across locations in 2015 and from 24.1 to 86.1 mm across
locations in 2014. Weather conditions did not deviate from normal
where yield responses would be expected from cool, wet environments.

Fig. 2. Normalized difference red edge (NDRE) index
values by location plotted by day of year and days
after soybean planting in 2014 and 2015. (For in-
terpretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)

Table 4
Average early season temperature and precipitation data of field trials at each location in Nebraska during 2014–2015.

April May

Maxa Min Average Departure Max Min Average Departure Precipitationb

Year Location °C °C mm

2014 Auburn 18.4 4.1 11.3 −0.8 25.6 11.6 18.6 0.7 78
Belgrade 16.6 −1.5 7.6 −1.2 22.0 6.3 14.2 −0.4 86
Shickley 18.4 4.3 11.4 −0.1 24.8 10.3 17.6 0.5 74
Snyder 16.7 1.9 9.3 −0.2 22.8 9.2 16.0 0.2 24

2015 Alda 13.8 −0.2 6.8 −3.1 22.7 8.7 15.7 −0.3 51
Greenwood 12.9 −0.4 6.2 −2.4 20.2 9.2 14.7 −0.3 242
Holdrege 13.8 −0.4 6.7 −3.5 22.4 8.7 15.6 −1.0 107
Wakefield 14.0 2.0 8.0 −2.4 21.8 10.9 16.3 −0.4 109

a Max, average monthly maximum temperature; Min, average monthly minimum temperature; Average, average monthly temperature; Departure; departure of average monthly
temperature from normal (1981–2010) average temperature. Data collected from the High Plains Regional Climate Center.

b Precip., precipitation totals from one week prior to planting to three weeks after planting. Data collected from the High Plains Regional Climate Center – CLIMOD (climod.unl.edu).
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Table 5
Simple and partial Pearson correlation coefficients (R) for the area under the disease progress curve (AURPC) values calculated through the R3 and R6 growth stages with seed yield and
residuals.

AURPC at R3 AURPC at R6

Simple R Partial R Simple R Partial R

Location R P > Fa R P > F R P > F R P > F
Alda 0.741 **** 0.271 ** 0.787 **** 0.327 ****
Auburn 0.277 ** 0.050 NS 0.464 **** 0.135 NS
Belgrade 0.401 **** 0.234 * 0.378 **** 0.262 **
Greenwood −0.184 * −0.143 + −0.138 NS −0.145 +
Holdrege 0.711 **** 0.099 NS 0.778 **** 0.145 +
Shickley 0.301 *** 0.166 + 0.387 **** 0.222 *
Snyder 0.555 **** 0.224 * 0.711 **** 0.336 ***
Wakefield 0.264 ** 0.214 * 0.280 *** 0.221 **

Significance from analysis of covariance: aNS = not significant; + = <0.10; * = <0.05; ** = <0.01; *** = <0.001; **** = <0.0001.

Table 6
Statistics of linear regression function for seed yield and residuals by area under the reflectance progress curve (AURPC) at the R6 growth stage by location.

Year Location Model1 Parameter2 Estimate Standard Error P > F3 R2

2014 Auburn Yield a −319.1 721.8 **** 0.2152
b 165.7 29.1

Residual a −717.2 484.4 NS 0.0183
b 29.0 19.5

Belgrade Yield a 705.7 907.3 **** 0.1426
b 177.3 40.0

Residual a −1526.1 517.4 ** 0.0687
b 67.3 22.8

Shickley Yield a 1071.1 909.9 **** 0.1494
b 144.8 31.8

Residual a −1674.1 676.9 * 0.0493
b 58.5 23.7

Snyder Yield a −1192.5 525.0 **** 0.5052
b 235.6 21.5

Residual a −1523.6 394.3 *** 0.1127
b 62.4 16.1

2015 Alda Yield a −11634.0 1031.4 **** 0.6193
b 574.6 38.5

Residual a −3117.6 770.8 **** 0.1067
b 116.4 28.8

Greenwood Yield a 5146.1 478.5 NS 0.0191
b −31.4 19.3

Residual a 588.8 344.3 + 0.0211
b −23.7 13.9

Holdrege Yield a 1392.9 278.2 **** 0.6056
b 172.3 11.9

Residual a −390.4 227.9 + 0.0211
b 16.7 9.7

Wakefield Yield a −385.7 1502.6 *** 0.0783
b 190.5 56.2

Residual a −2866.94 1089.7 ** 0.0488
b 107.3 40.8

1 Two models tested for each location defined as: yield = seed yield; residuals = residuals from model accounting for all fixed and random effects.
2 Parameters for linear regression defined as: a = intercept; b = AURPC at the R6 growth stage.
3 Significance indicated by: NS = not significant; + = <0.10; * = <0.05; ** = <0.01; *** = <0.001; **** = <0.0001.

Table 7
Probability of classifying yield into three management zones based on area under the disease progress curve (AURPC) calculations through the R3 and R6 growth stage.

AURPC at R3 AURPC at R6

Yield Classa Bottomb(SE) P > Fc Middle (SE) P > F Top (SE) P > F Bottom (SE) P > F Middle (SE) P > F Top (SE) P > F
Bottom 0.5127 (0.033) **** 0.1726 (0.017) * 0.1441 (0.023) **** 0.5245 (0.033) **** 0.1767 (0.017) + 0.1229 (0.021) ****
Middle 0.3729 (0.031) * 0.5904 (0.022) **** 0.4407 (0.032) NS 0.3771 (0.032) **** 0.5925 (0.022) **** 0.4322 (0.032) NS
Top 0.1144 (0.021) **** 0.237 (0.019) * 0.4153 (0.032) **** 0.09746 (0.019) **** 0.2308 (0.019) + 0.4449 (0.032) ****

a Yield classification defined as: Bottom = lowest 25% of yield by location; Middle = middle 50% of yield by location; Top = top 25% of yield by location.
b AURPC classification defined as: Bottom = lowest 25% of AURPC by location; Middle = middle 50% of AURPC by location; Top = top 25% of AURPC by location.
c Significance indicated by: NS = not significant; += <0.10; * = <0.05; ** = <0.01; *** = <0.001; **** = <0.0001.
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4.1. Correlation between cumulative reflectance and yield

Analyzing seed yield using the analysis of covariance with re-
flectance as a covariate indicated that cumulative reflectance values
were significantly associated with yield at the R3 growth stage
(F = 40.01, p < 0.0001) and the R6 growth stage (F = 70.58,
p < 0.0001) combined over locations after accounting for the fixed
treatment effects and random effects. The reflectance values were sig-
nificantly correlated with yield (p < 0.01) for all locations except
Greenwood (Table 5). Residuals obtained from the general linear model
without the reflectance values as covariates were less correlated with
yield and only significant (p < 0.05) at five of the eight locations using
AURPC at R6 and four of the eight locations using AURPC at R3
(Table 5).

Regression analysis on seed yield was significant (p < 0.0001) for
AURPC at R6 for all locations except for Greenwood, with the highest
correlation at Alda (R2=0.6193) (Table 6). Regression analysis on re-
siduals demonstrated the relationship of the variance that was not ac-
counted for by the treatment and random effects with AURPC at R6.
Two locations (Alda and Snyder) were significant at the 0.001 level and
three locations (Belgrade, Shickley, and Wakefield) were significant at
the 0.05 level. The largest correlation between residuals and AURPC at
R6 was at Snyder (R2 = 0.1127).

4.2. Field productivity classification

The AURPC values were further used to predict soybean yield by
using a classification scheme, whereby AURPC and yield values were
classified as top 25%, middle 50%, or bottom 25% within a given lo-
cation. This approach was used to determine if management zones
could be established to identify the top and bottom producing areas of a
production soybean field prior to harvest. A combined analysis and
analysis by location were performed to determine the probability of a
given yield class being associated with a given AURPC class. In the
combined experiment, using AURPC at R6 resulted in slightly higher
probabilities of predicting the bottom yield with the bottom AURPC and
the top yield with the top AURPC than using AURPC at R3 by 0.012 and
0.030, respectively (Table 7). The AURPC at R6 also resulted in a
slightly lower probability of incorrectly identifying the top yield with
the bottom AURPC and the bottom yield with the top AURPC by 0.017
and 0.021, respectively.

The analysis by location of AURPC at R6 revealed that the
Greenwood location was poorly classified using this method (Table 8).
Greenwood also had the lowest correlation using the linear model.
Wakefield had a low probability of correctly classifying the low yield
class (0.276). Other locations correctly predicted the bottom yield with
the bottom AURPC with probabilities ranging from 0.4667 (Shickley) to
0.8621 (Holdrege). Predicting the top yield class with the top AURPC
was more variable as probabilities ranged from 0.2667 (Belgrade) to
0.7241 (Alda). The probability of an opposite classification, top yield
with bottom AURPC or bottom yield with top AURPC, was also low
among all locations excluding Greenwood. The probability of in-
correctly classifying the bottom yield with the top AURPC ranged from
0.1667 (Belgrade and Shickley) to 0.3333 (Snyder). Alternatively, the
probability of incorrectly classifying the top yield with the bottom
AURPC ranged from 0.000 (Alda and Holdrege) to 0.1667 (Shickley).

4.3. Treatment effect on individual crop canopy reflectance readings

Individual reflectance measurements were evaluated based on the
response to a subset of the seed and foliar treatments used in the
complete experiment. A repeated measures analysis indicated a sig-
nificant 3-way interaction between seed treatment x location x time
influencing NDRE index values (p = 0.0004), but no influence of foliar
treatments on NDRE reflectance. The NDRE responses to seed

Table 8
Probability of classifying yield into three management zones based on area under the disease progress curve (AURPC) calculations through the R6 growth stage by location in 2014 and
2015.

2014

Auburn Belgrade Shickley Snyder
Yield Classa Bottomb

(SE)
Middle
(SE)

Top (SE) Bottom
(SE)

Middle
(SE)

Top (SE) Bottom
(SE)

Middle
(SE)

Top (SE) Bottom
(SE)

Middle
(SE)

Top (SE)

Bottom 0.500
(0.091)

0.200
(0.052)

0.100
(0.055)

0.533
(0.091)

0.150
(0.046)

0.167
(0.068)

0.467
(0.091)

0.183
(0.050)

0.167
(0.068)

0.633
(0.088)

0.167
(0.048)

0.033
(0.033)

Middle 0.433
(0.090)

0.567
(0.064)

0.433
(0.090)

0.433
(0.090)

0.500
(0.065)

0.567
(0.090)

0.367
(0.088)

0.583
(0.064)

0.467
(0.091)

0.333
(0.086)

0.683
(0.060)

0.300
(0.084)

Top 0.067
(0.046)

0.233
(0.055)

0.467
(0.091)

0.033
(0.033)

0.350
(0.062)

0.267
(0.081)

0.167
(0.068)

0.233
(0.055)

0.367
(0.088)

0.033
(0.033)

0.150
(0.046)

0.667
(0.086)

2015
Alda Greenwood Holdrege Wakefield

Yield Class Bottom (SE) Middle
(SE)

Top (SE) Bottom
(SE)

Middle
(SE)

Top (SE) Bottom
(SE)

Middle
(SE)

Top (SE) Bottom
(SE)

Middle
(SE)

Top (SE)

Bottom 0.689
(0.087)

0.131
(0.043)

0.034
(0.034)

0.241
(0.079)

0.250
(0.056)

0.310
(0.086)

0.862
(0.064)

0.049
(0.028)

0.034
(0.034)

0.276
(0.083)

0.288
(0.059)

0.138
(0.064)

Middle 0.310
(0.086)

0.738
(0.056)

0.241
(0.079)

0.379
(0.090)

0.467
(0.064)

0.621
(0.090)

0.138
(0.064)

0.721
(0.057)

0.448
(0.092)

0.621
(0.090)

0.475
(0.065)

0.379
(0.090)

Top 0.000
(0.0000)

0.131
(0.043)

0.724
(0.083)

0.379
(0.090)

0.283
(0.058)

0.069
(0.047)

0.000
(0.000)

0.230
(0.054)

0.517
(0.093)

0.104
(0.057)

0.237
(0.055)

0.483
(0.093)

a Yield classification defined as: Bottom = lowest 25% of yield by location; Middle = middle 50% of yield by location; Top = top 25% of yield by location.
b AURPC classification defined as: Bottom = lowest 25% of AURPC by location; Middle = middle 50% of AURPC by location; Top = top 25% of AURPC by location.

Table 9
Growth stage and location where significant differences in individual normalized differ-
ence red edge (NDRE) index values were detected for early season seed treatments.

Growth Stage

Year Location Early Vegetative Late Vegetative R2 R3
2014 Auburn NSa * **** **

Belgrade NS NS + NS
Shickley NS + ** NS
Snyder NS * ** **

2015 Alda NS NS + NS
Greenwood *** ** ** **
Holdrege ** ** ** **
Wakefield NS NS NS NS

a NS = no significant difference; + = <0.10; * = <0.05; ** = <0.01;
*** = <0.001; **** = <0.0001.
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treatments were evaluated by location at each evaluation time. Seed
treatments influenced NDRE values at R2 at five locations (p < 0.01)
and two locations (p < 0.10) (Table 9). Means comparison analysis at
R2 indicated that at the five locations with a p-value less than 0.01, the
C-ST treatment resulted in a greater NDRE value than both F-ST and N-
ST. The NDRE values of the C-ST treatment were greater than the N-ST
at the two locations, Belgrade and Alda, with a p-value less than 0.10
(Fig. 3).

Pearson’s simple linear correlation coefficients between NDRE va-
lues and early soybean populations were calculated for each location
and three evaluation times, early vegetative, R2, and R3 growth stages.
All locations that had a significant seed treatment effect at the R2
growth stage (p < 0.05) (Table 9) had a significant correlation be-
tween NDRE reflectance and soybean population (p=0.05) (Table 10).
All correlations (r2) were less than 0.3 except for the evaluation at R2 at
the Greenwood location that had a coefficient of 0.3137. Therefore, we
can conclude that the influence of soybean population on NDRE re-
flectance is present, but accounts for a small portion of the variability
associated with reflectance.

5. Discussion

This study used a common calculation associated with plant pa-
thology to provide more information about the season-long growth of
soybean. The area under the disease progress curve (AUDPC) is used in

epidemiology to quantitatively measure disease severity over time. This
calculation was exploited to quantitatively measure accumulated re-
flectance over time, thereby providing information on the biomass and
chlorophyll status of the soybean plots over the course of the season.
Individual NDRE measurements were also evaluated to determine if
seed and pod set treatments influenced soybean canopy reflectance at
various times through the season.

The AURPC value calculated through the R3 and R6 growth stages
were selected to determine their association with seed yield. A positive
correlation was found between seed yield and both AURPC values at
seven of the eight locations. However, this correlation was influenced
by the fixed treatment effects and random effects accounted for by the
experimental design, so residuals were obtained to determine the
amount of variation in yield not associated with these effects. The
correlation between the residuals and AURPC values was much less, but
still significant (p < 0.05) for AURPC at R3 and R6 at four and five of
the eight locations, respectively.

Creation of management zones was also used to determine the as-
sociation between seed yield and AURPC. Characterizing the pro-
ductivity of the field as low or high could be useful to producers for
investigating potential problem areas in the field and making appro-
priate management decisions. A classification scheme identifying the
yield and AURPC within a location as the top 25%, middle 50%, or
bottom 25% was created. Probabilities were calculated for correctly
identifying a yield class with an AURPC class, and conversely,

Fig. 3. Differences in normalized difference red edge
(NDRE) index values by early season seed treatment
at the R2 growth stage at each location. Different
letters denote significant differences within locations
at p = 0.05 (except Belgrade, p = 0.09). Seed
treatments – CST [CruiserMaxx Advanced
+ Vibrance + nitrogen (2014) or CruiserMaxx
Advanced + Vibrance + QuickRoots (2015)]; FST
(ApronMaxx + Vibrance); NST (nontreated check).
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Table 10
Pearson’s linear correlation coefficients between normalized difference red edge (NDRE) index values and early soybean populations for each location and three evaluation times.

Late Vegetativea R2 R3

Year Location R R2 P < |r| R R2 P < |r| R R2 P < |r|
2014 Auburn 0.2879 0.0829 0.0472 0.3661 0.1340 0.0105 0.2168 0.0470 0.1388

Belgrade −0.1000 0.0100 0.4994 0.0176 0.0003 0.9056 0.1780 0.0317 0.2263
Shickley 0.5145 0.2647 0.0002 0.5310 0.2820 0.0001 0.3919 0.1536 0.0059
Snyder 0.4797 0.2301 0.0006 0.3420 0.1170 0.0173 0.4025 0.1620 0.0046

2015 Alda 0.2019 0.0408 0.1688 0.1825 0.0333 0.2143 0.1341 0.0180 0.3635
Greenwood 0.4647 0.2159 0.0009 0.5601 0.3137 <0.0001 0.4863 0.2365 0.0005
Holdrege 0.4835 0.2338 0.0006 0.4988 0.2488 0.0004 0.3565 0.1271 0.0139
Wakefield 0.1459 0.0213 0.3279 −0.0502 0.0025 0.7376 −0.1686 0.0284 0.2572

a Three evaluation times were late vegetative (between V5 and V8 growth stages), the R2 (late flowering) growth stage, and the R3 (beginning pod set) growth stage.
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incorrectly identifying a yield class with the opposite AURPC class. The
results of this analysis were positive with high probabilities of correct
classifications and low probabilities of incorrect classifications. This
method should be investigated further to develop a process that could
enable growers to identify low and high producing areas of their soy-
bean fields prior to harvest.

From this study, it was found that the use of a crop canopy sensor
could differentiate between seed treatments by using NDRE.
Investigating the source of the variation revealed that the NDRE
reading was partially correlated to soybean population, data that is
commonly collected manually in small-plot soybean research.
Determining soybean population involves evaluators, potentially sev-
eral, counting individual soybean plants over a given distance and re-
cording the number of plants. The process is time consuming and often
biased based on the evaluator. The use of active crop canopy sensors
provides more information than stand counts alone can provide on the
influence of seed treatments on soybean growth and development, and
should be evaluated as an alternative method to stand counts to save
time and remove evaluator bias from the process.

No associations between NDRE and foliar treatments were found in
this study. However, it should be noted that this study was investigating
the use of foliar fungicide and insecticide products as part of a planned
pod set (R3) application, and very little disease or insect pressure was
present. Therefore, to evaluate the effectiveness of detecting foliar
treatment effects on soybean growth and development, studies should
be performed under controlled disease and insect pressures where re-
sponses to treatment are expected. This study indicates that the use of
foliar treatments in the absence of heavy disease and insect pressure did
not influence soybean canopy reflectance.

6. Conclusion

Gaining a better understanding of soybean canopy reflectance will
help researchers and growers use crop sensing technology to help fur-
ther soybean research and production. Although numerous vegetation
indices are available for research, the NDRE index was used in this
experiment because it can be calculated using the RapidSCAN CS-45
Handheld Crop Scanner, a commercially-available optical sensor. The
use of the NDRE index provides the ability to use a vegetation index
that can be used at higher canopy biomass and an active sensor elim-
inates the limitations inherent to passive sensors, especially regarding
changes in intermittent cloud cover and timing of sensor readings. It
also offers an alternative to make crop evaluations in an unbiased
manner that is inherent to many data collection methods.

The RapidSCAN CS-45 was used to evaluate soybean canopy re-
flectance in a study evaluating the use of seed and foliar treatments to
increase yield in Nebraska. The NDRE vegetation index was used for its
relation to crop canopy biomass and chlorophyll content. Cumulative
reflectance was calculated to provide a quantitative measure of re-
flectance over the growing season and named the area under the re-
flectance progress curve (AURPC). Using AURPC calculated through the
R3 and R6 growth stages revealed a correlation between the reflectance
values and seed yield. A novel classification method was used to
identify the high and low producing soybean plots. The high probability
of correctly classifying yield (same AURPC and yield class) and the low
probability of incorrectly classifying yield (opposite AURPC and yield
class) indicates that this method could be used to delineate manage-
ment zones based on the potential productivity of a production soybean
field that may require management prior to harvest. Additionally, in-
dividual NDRE readings at R2 were influenced by seed treatments and,
upon further investigation, were correlated to early-season soybean
populations. Further research is needed to validate the classification
process for identifying management zones in production soybean fields
and the ability to use the RapidSCAN sensor to evaluate physiological
responses to soybean seed treatments. The methods proposed in this
paper should be evaluated further using aerial or satellite based sensors

equipped with RE and NIR wavebands to determine if the spatial re-
solution is adequate to create field level management zone maps using
NDRE as the selected vegetation index.
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